PERFORMANCE FACTS

Two varieties of high-performance dual-phase steels are supplied by voestalpine: classic and high ductility.

We have taken a look at how the two products compare in the areas of:

- forming
- welding
- crash behavior

The voestalpine steel experts compared the two materials.
FORMING PROPERTIES

The classic dual-phase steels feature high strength, very good cold formability, a balanced relationship between deep drawing properties and high resistance to edge cracking. High-ductility dual-phase steels exceed this property profile and are thus best suitable for complex structural components.

The forming limit curve characterizes the material and allows selection of the correct material. The significantly improved forming properties of CR440Y780T-DH as compared to CR440Y780T-DP can be clearly seen in the diagram.

THE HIGHER FORMING POTENTIAL OF HIGH-DUCTILITY STEELS ALLOWS MORE COMPLEX GEOMETRIES OR ADDITIONAL WEIGHT SAVINGS

The forming limit curve characterizes the material and allows selection of the correct material. The significantly improved forming properties of CR440Y780T-DH as compared to CR440Y780T-DP can be clearly seen in the diagram.
More freedom of design
The high forming potential of dual-phase high-ductility steel grades makes it possible to achieve complex components and thus offers more freedom of design.

New potential in light-weight design
The improved forming properties in high-ductility steels permit processing of a higher strength class and thus the reduction of component wall thicknesses. The resulting weight reduction opens new pathways in light-weight design.

HIGH DAMAGE TOLERANCE AND HIGH RESISTANCE TO EDGE CRACKING
The resistance to edge cracking in CR440Y780T-DP and CR440Y780T-DH are in a comparable range.
WELDABILITY

The weldability of a steel grade is a material property with high technological significance. Resistance spot welding continues to be the sustainable method of joining parts in car body manufacturing. The further processing of high-ductility dual-phase steels does not pose any problems because of their excellent weldability.

<table>
<thead>
<tr>
<th>Welding parameters pursuant to ISO 18278-1: MFDC 1 impulse, sheet thickness: 1.5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR440Y780T-DP</td>
</tr>
<tr>
<td>Spot weld diameter (mm)</td>
</tr>
<tr>
<td>4.9 (min)</td>
</tr>
<tr>
<td>6.6 (min)</td>
</tr>
</tbody>
</table>

PROCESS RELIABILITY BASED ON BROAD WELDING RANGE

CR440Y780T-DP and CR440Y780T-DH share a comparable range with respect to resistance spot welding.

SAME HIGH LEVEL OF TOUGHNESS IN SHEAR AND CROSS-TENSION TESTS

Spot welds in high-ductility dual-phase steels exhibit the same high breaking loads of CR440Y780T-DP and thus allow the production of crash-resistance structural components.
CRASH BEHAVIOR

Tested in the voestalpine crash simulator

Crash test results provide important information for materials development and users. The tests are performed on high-strength automotive steels up to the limits of their ductility in order to guarantee their suitability in highly demanding applications.

EXCELLENT BUCKLING PROPERTIES OF CR440Y780T-DH

AXIAL CRASH OF LONGITUDINAL MEMBER

Both CR440Y780T-DP and CR440Y780T-DH are characterized by excellent crash behavior. Both steel grades demonstrate comparable buckling behavior and energy absorption in axial crashes.

Please find further information at: www.voestalpine.at/ultralights