C-STÄHLE WARMGEWALZT

Kohlenstoff-Stähle für die Direktverarbeitung oder zum Kaltwalzen

C-Stähle als Warmband für die Direktverarbeitung oder zum Kaltwalzen sind üblicherweise für eine Wärmebehandlung vorgesehen, um die gewünschten Verarbeitungs- und Bauteileigenschaften einzustellen.

Einsatzstähle:
» Für Bauteile mit hoher Zähigkeit im Kern und verschleißfester Oberfläche.
» Lieferung nach EN ISO 683-3 (für Kaltwalzer EN 10132-2)

Vergütungsstähle:
» Unlegiert oder legiert, für Härte und Zähigkeit nach Bedarf.
» Lieferung nach EN ISO 683-1 + 2 (für Kaltwalzer EN 10132-3 + 4)

Federstähle:
» Technische Federn, Bauteile mit hoher Abriebfestigkeit und Steifigkeit.
» Lieferung nach EN 10089
Einsatzstähle
Der C-Gehalt liegt für eine optimale Zerspanung und Umformung zwischen 0,10 % und 0,20 %. Um am Bauteil die gewünschten Eigenschaften – eine hohe Härte der Randschicht und einen meist zähen Kern – zu erreichen, muss der Oberflächenbereich mit Kohlenstoff angereichert und anschließend gehärtet und ev. angelassen bzw. entspannt werden. Die C-Anreicherung erfolgt im Zuge der Bauteilherstellung durch Aufkohlen und wenn gleichzeitig Stickstoff angereichert werden soll, durch Carbonitrieren.

Vergütungsstähle
Die EN ISO 683-1 + 2 unterscheidet zwischen unlegierten Vergütungsstählen (Teil 1) und legierten Vergütungsstählen (Teil 2). Zum Einstellen der gewünschten Bauteileigenschaften – meist eine optimale Kombination aus Festigkeit und Zähigkeit – ist eine Wärmebehandlung vorgesehen:
» Normalglühen
» Vergüten (Härten + Anlassen)

Federstähle

Maximal erzielbare Härte in Abhängigkeit von Kohlenstoff und Martensitgehalt
Chemische Zusammensetzung:
Schmelzenanalyse in Masse-%

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Einsatzstähle nach EN ISO 683-3</td>
<td></td>
</tr>
<tr>
<td>C10E</td>
<td>0,07–0,13</td>
<td>0,40</td>
<td>0,30–0,60</td>
<td>0,025</td>
<td>0,035</td>
<td>0,40</td>
<td>0,40</td>
<td>0,10</td>
<td>0,30</td>
<td>–</td>
</tr>
<tr>
<td>C15E</td>
<td>0,12–0,18</td>
<td>0,40</td>
<td>0,30–0,60</td>
<td>0,025</td>
<td>0,035</td>
<td>0,40</td>
<td>0,40</td>
<td>0,10</td>
<td>0,30</td>
<td>–</td>
</tr>
<tr>
<td>18MnCr5</td>
<td>0,14–0,19</td>
<td>0,40</td>
<td>1,00–1,50</td>
<td>0,025</td>
<td>0,035</td>
<td>0,80–1,10</td>
<td>–</td>
<td>–</td>
<td>0,40</td>
<td>–</td>
</tr>
<tr>
<td>Stahlsorte</td>
<td>C</td>
<td>Si</td>
<td>Mn</td>
<td>P max.</td>
<td>S max.</td>
<td>Cr max.</td>
<td>Ni max.</td>
<td>Mo max.</td>
<td>Cu max.</td>
<td>andere</td>
</tr>
<tr>
<td>Unlegierte Vergütungsstähle nach EN ISO 683-1 und nach EN 10132-4</td>
<td></td>
</tr>
<tr>
<td>C35E</td>
<td>0,32–0,39</td>
<td>0,40</td>
<td>0,50–0,80</td>
<td>0,025</td>
<td>0,035</td>
<td>0,40</td>
<td>0,40</td>
<td>0,10</td>
<td>0,30</td>
<td>–</td>
</tr>
<tr>
<td>C45E</td>
<td>0,42–0,50</td>
<td>0,40</td>
<td>0,50–0,80</td>
<td>0,025</td>
<td>0,035</td>
<td>0,40</td>
<td>0,40</td>
<td>0,10</td>
<td>0,30</td>
<td>–</td>
</tr>
<tr>
<td>C50E</td>
<td>0,47–0,55</td>
<td>0,40</td>
<td>0,60–0,90</td>
<td>0,025</td>
<td>0,035</td>
<td>0,40</td>
<td>0,40</td>
<td>0,10</td>
<td>0,30</td>
<td>–</td>
</tr>
<tr>
<td>C55E</td>
<td>0,52–0,60</td>
<td>0,40</td>
<td>0,60–0,90</td>
<td>0,025</td>
<td>0,035</td>
<td>0,40</td>
<td>0,40</td>
<td>0,10</td>
<td>0,30</td>
<td>–</td>
</tr>
<tr>
<td>C60E</td>
<td>0,57–0,65</td>
<td>0,40</td>
<td>0,60–0,90</td>
<td>0,025</td>
<td>0,035</td>
<td>0,40</td>
<td>0,40</td>
<td>0,10</td>
<td>0,30</td>
<td>–</td>
</tr>
<tr>
<td>C675</td>
<td>0,65–0,73</td>
<td>0,15–0,35</td>
<td>0,60–0,90</td>
<td>0,025</td>
<td>0,025</td>
<td>0,40</td>
<td>0,40</td>
<td>0,10</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C755</td>
<td>0,70–0,80</td>
<td>0,15–0,35</td>
<td>0,60–0,90</td>
<td>0,025</td>
<td>0,025</td>
<td>0,40</td>
<td>0,40</td>
<td>0,10</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Legierte Vergütungsstähle nach EN ISO 683-2</td>
<td></td>
</tr>
<tr>
<td>25CrMo4</td>
<td>0,22–0,29</td>
<td>0,40</td>
<td>0,60–0,90</td>
<td>0,025</td>
<td>0,035</td>
<td>0,40</td>
<td>0,40</td>
<td>0,10</td>
<td>0,30</td>
<td>–</td>
</tr>
<tr>
<td>34CrMo4</td>
<td>0,30–0,37</td>
<td>0,40</td>
<td>0,60–0,90</td>
<td>0,025</td>
<td>0,035</td>
<td>0,40</td>
<td>0,40</td>
<td>0,10</td>
<td>0,30</td>
<td>–</td>
</tr>
<tr>
<td>42CrMo4</td>
<td>0,38–0,45</td>
<td>0,40</td>
<td>0,60–0,90</td>
<td>0,025</td>
<td>0,035</td>
<td>0,40</td>
<td>0,40</td>
<td>0,10</td>
<td>0,30</td>
<td>–</td>
</tr>
<tr>
<td>51CrV4</td>
<td>0,47–0,55</td>
<td>0,40</td>
<td>0,60–1,00</td>
<td>0,025</td>
<td>0,025</td>
<td>0,80–1,10</td>
<td>–</td>
<td>–</td>
<td>0,40</td>
<td>V=0,10–0,25</td>
</tr>
<tr>
<td>20MnB5</td>
<td>0,17–0,23</td>
<td>0,40</td>
<td>0,10–1,40</td>
<td>0,025</td>
<td>0,035</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,40</td>
<td>B=0,0008–0,015</td>
</tr>
<tr>
<td>27MnCrB5-2</td>
<td>0,24–0,30</td>
<td>0,40</td>
<td>0,10–1,40</td>
<td>0,025</td>
<td>0,035</td>
<td>0,30–0,60</td>
<td>–</td>
<td>–</td>
<td>0,40</td>
<td>B=0,0008–0,015</td>
</tr>
<tr>
<td>Stahlsorte</td>
<td>C</td>
<td>Si max.</td>
<td>Mn</td>
<td>P max.</td>
<td>S max.</td>
<td>Cr</td>
<td>Ni max.</td>
<td>Mo max.</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Federstähle nach EN 10089</td>
<td></td>
</tr>
<tr>
<td>5TCV4</td>
<td>0,47–0,55</td>
<td>0,40</td>
<td>0,70–1,10</td>
<td>0,025</td>
<td>0,025</td>
<td>0,90–1,20</td>
<td>–</td>
<td>–</td>
<td>0,10–0,25</td>
<td></td>
</tr>
<tr>
<td>Stahlsorte</td>
<td>C</td>
<td>Si</td>
<td>Mn</td>
<td>P max.</td>
<td>S max.</td>
<td>Cr</td>
<td>Ni</td>
<td>Mo</td>
<td>Cu max.</td>
<td>andere</td>
</tr>
<tr>
<td>Sonderstähle</td>
<td></td>
</tr>
<tr>
<td>D6A</td>
<td>0,42–0,49</td>
<td>0,15–0,35</td>
<td>0,70–1,00</td>
<td>0,025</td>
<td>0,01</td>
<td>0,80–1,20</td>
<td>0,40–0,70</td>
<td>0,80–1,20</td>
<td>0,25</td>
<td>V=0,10–0,15</td>
</tr>
<tr>
<td>58CrV4</td>
<td>0,54–0,62</td>
<td>0,15–0,35</td>
<td>0,70–1,10</td>
<td>0,025</td>
<td>0,01</td>
<td>0,90–1,20</td>
<td>0,40–0,70</td>
<td>0,80–1,20</td>
<td>0,25</td>
<td>V=0,10–0,25</td>
</tr>
<tr>
<td>63NiNb4</td>
<td>0,60–0,66</td>
<td>0,15–0,35</td>
<td>0,30–0,60</td>
<td>0,025</td>
<td>0,01</td>
<td>max 0,15</td>
<td>0,45–1,10</td>
<td>max 0,15</td>
<td>0,25</td>
<td>Nb=0,03–0,05</td>
</tr>
<tr>
<td>66NiCrMo3</td>
<td>0,65–0,71</td>
<td>0,15–0,35</td>
<td>0,30–0,60</td>
<td>0,025</td>
<td>0,01</td>
<td>0,40–0,60</td>
<td>0,50–0,80</td>
<td>0,15–0,25</td>
<td>0,25</td>
<td>–</td>
</tr>
<tr>
<td>72NiCrMo4-2</td>
<td>0,69–0,75</td>
<td>0,15–0,35</td>
<td>0,40–0,70</td>
<td>0,025</td>
<td>0,01</td>
<td>0,30–0,40</td>
<td>0,50–1,00</td>
<td>0,10–0,15</td>
<td>0,25</td>
<td>–</td>
</tr>
<tr>
<td>75Cr1</td>
<td>0,70–0,80</td>
<td>0,25–0,50</td>
<td>0,40–0,80</td>
<td>0,025</td>
<td>0,01</td>
<td>max 0,15</td>
<td>1,00–1,20</td>
<td>max 0,25</td>
<td>max 0,06</td>
<td>0,25</td>
</tr>
<tr>
<td>75CrNiMo</td>
<td>0,70–0,80</td>
<td>0,15–0,35</td>
<td>0,40–0,90</td>
<td>0,025</td>
<td>0,01</td>
<td>0,50–0,70</td>
<td>0,30–0,60</td>
<td>0,15–0,15</td>
<td>0,25</td>
<td>–</td>
</tr>
<tr>
<td>75Ni8</td>
<td>0,72–0,78</td>
<td>0,15–0,35</td>
<td>0,30–0,50</td>
<td>0,025</td>
<td>0,01</td>
<td>max 0,15</td>
<td>1,80–2,10</td>
<td>max 0,06</td>
<td>0,25</td>
<td>–</td>
</tr>
<tr>
<td>80CrV2</td>
<td>0,78–0,85</td>
<td>0,15–0,35</td>
<td>0,40–0,70</td>
<td>0,025</td>
<td>0,01</td>
<td>0,40–0,60</td>
<td>max 0,25</td>
<td>max 0,06</td>
<td>0,25</td>
<td>V=0,15–0,25</td>
</tr>
<tr>
<td>C100S</td>
<td>0,95–1,05</td>
<td>0,15–0,35</td>
<td>0,30–0,60</td>
<td>0,025</td>
<td>0,01</td>
<td>0,40–0,60</td>
<td>max 0,25</td>
<td>max 0,06</td>
<td>0,25</td>
<td>–</td>
</tr>
</tbody>
</table>

5) Abweichungen von den angegebenen Schmelzenanalysen sowie engere Grenzwerte bitte anfragen.
6) Stahlsorte nach EN10132-4 (Norm für kaltgewalztes Band)

Stahlsorten Vergleichstabelle:

<table>
<thead>
<tr>
<th>Stahlsorte</th>
<th>Werkstoffnummer</th>
<th>Euronorm</th>
<th>SAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einsatzstähle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10E</td>
<td>1.1121</td>
<td>EN ISO 683-3</td>
<td>1010</td>
</tr>
<tr>
<td>C15E</td>
<td>1.1141</td>
<td>EN ISO 683-3</td>
<td>1015</td>
</tr>
<tr>
<td>16MnCr5</td>
<td>1.7131</td>
<td>EN ISO 683-3</td>
<td>5115</td>
</tr>
<tr>
<td>Unlegierte Vergütungsstähle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35E</td>
<td>1.1181</td>
<td>EN ISO 683-1</td>
<td>1035</td>
</tr>
<tr>
<td>C45E</td>
<td>1.1191</td>
<td>EN ISO 683-1</td>
<td>1045</td>
</tr>
<tr>
<td>C50E</td>
<td>1.1206</td>
<td>EN ISO 683-1</td>
<td>1050</td>
</tr>
<tr>
<td>C55E</td>
<td>1.1203</td>
<td>EN ISO 683-1</td>
<td>1055</td>
</tr>
<tr>
<td>C55S</td>
<td>1.1204</td>
<td>EN 10132 Teil 4</td>
<td>1055</td>
</tr>
<tr>
<td>C60E</td>
<td>1.1221</td>
<td>EN ISO 683-7</td>
<td>1060</td>
</tr>
<tr>
<td>C60S</td>
<td>1.1211</td>
<td>EN 10132 Teil 4</td>
<td>1060</td>
</tr>
<tr>
<td>C67S</td>
<td>1.1231</td>
<td>EN 10132 Teil 4</td>
<td>1065/1070</td>
</tr>
<tr>
<td>C75S</td>
<td>1.1246</td>
<td>EN 10132 Teil 4</td>
<td>1074</td>
</tr>
<tr>
<td>Legierte Vergütungsstähle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25CrMo4</td>
<td>1.7216</td>
<td>EN ISO 683-2</td>
<td>4130</td>
</tr>
<tr>
<td>34CrMo4</td>
<td>1.7220</td>
<td>EN ISO 683-2</td>
<td>4135</td>
</tr>
<tr>
<td>42CrMo4</td>
<td>1.7225</td>
<td>EN ISO 683-2</td>
<td>4140/4142</td>
</tr>
<tr>
<td>51CrV4</td>
<td>1.8159</td>
<td>EN ISO 683-2</td>
<td>6150</td>
</tr>
<tr>
<td>58CV4</td>
<td>1.8161</td>
<td>Sondergüte</td>
<td>–</td>
</tr>
<tr>
<td>20MnB5</td>
<td>1.5530</td>
<td>EN ISO 683-2</td>
<td>–</td>
</tr>
<tr>
<td>27MnCrB5-2</td>
<td>1.7182</td>
<td>EN ISO 683-2</td>
<td>–</td>
</tr>
<tr>
<td>Federstähle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51CrV4</td>
<td>1.8159</td>
<td>EN 10089</td>
<td>6150</td>
</tr>
<tr>
<td>Sonderstähle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6A</td>
<td>1.2791</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>58CV4</td>
<td>1.8161</td>
<td>Sondergüte</td>
<td>–</td>
</tr>
<tr>
<td>63NiNb4</td>
<td>–</td>
<td>–</td>
<td>6660+Nb</td>
</tr>
<tr>
<td>68NiCrMo3</td>
<td>–</td>
<td>–</td>
<td>6667/6667mod</td>
</tr>
<tr>
<td>72NiCrMo4-2</td>
<td>–</td>
<td>–</td>
<td>8670</td>
</tr>
<tr>
<td>75CrNiMo</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>75Cr1</td>
<td>1.2003</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>75Ni8</td>
<td>1.5634</td>
<td>EN 10132-4</td>
<td>–</td>
</tr>
<tr>
<td>80CrV2</td>
<td>1.2235</td>
<td>EN 10132-4</td>
<td>–</td>
</tr>
<tr>
<td>100S</td>
<td>1.1274</td>
<td>EN 10132-4</td>
<td>–</td>
</tr>
</tbody>
</table>
Mechanische Eigenschaften: Zugversuch
Richtwerte abhängig vom Lieferzustand

<table>
<thead>
<tr>
<th>Stahlsorte</th>
<th>Walzzustand</th>
<th>Weichgeglüht</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dehngrenze $R_{p0,2}$ [MPa]</td>
<td>Zugfestigkeit R_m [MPa]</td>
</tr>
<tr>
<td>C10E</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>C15E</td>
<td>330</td>
<td>470</td>
</tr>
<tr>
<td>16MnCr5</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>C35E</td>
<td>450</td>
<td>680</td>
</tr>
<tr>
<td>C45E</td>
<td>460</td>
<td>750</td>
</tr>
<tr>
<td>C50E</td>
<td>490</td>
<td>830</td>
</tr>
<tr>
<td>C55E / C55S</td>
<td>500</td>
<td>840</td>
</tr>
<tr>
<td>C60E / C60S</td>
<td>520</td>
<td>860</td>
</tr>
<tr>
<td>C67S</td>
<td>550</td>
<td>950</td>
</tr>
<tr>
<td>C75S</td>
<td>550</td>
<td>950</td>
</tr>
<tr>
<td>25CrMo4</td>
<td>650</td>
<td>850</td>
</tr>
<tr>
<td>34CrMo4</td>
<td>770</td>
<td>970</td>
</tr>
<tr>
<td>42CrMo4</td>
<td>790</td>
<td>990</td>
</tr>
<tr>
<td>51CrV4</td>
<td>850</td>
<td>1050</td>
</tr>
<tr>
<td>27MnCrB5-2</td>
<td>490</td>
<td>670</td>
</tr>
<tr>
<td>20MnB5</td>
<td>530</td>
<td>680</td>
</tr>
<tr>
<td>58CrV4</td>
<td>870</td>
<td>1070</td>
</tr>
<tr>
<td>63Ni2B4</td>
<td>700</td>
<td>1000</td>
</tr>
<tr>
<td>68NiC1Mo3</td>
<td>700</td>
<td>1000</td>
</tr>
<tr>
<td>72NiC1Mo4-2</td>
<td>700</td>
<td>1000</td>
</tr>
<tr>
<td>75Cr2NiMo</td>
<td>840</td>
<td>1140</td>
</tr>
<tr>
<td>75Cr1</td>
<td>700</td>
<td>1000</td>
</tr>
<tr>
<td>75N8</td>
<td>740</td>
<td>1100</td>
</tr>
<tr>
<td>80CrV2</td>
<td>990</td>
<td>1300</td>
</tr>
<tr>
<td>C100S</td>
<td>700</td>
<td>1200</td>
</tr>
<tr>
<td>D6A</td>
<td>980</td>
<td>1250</td>
</tr>
</tbody>
</table>

Kohlenstoff-Stähle werden üblicherweise im Lieferzustand ohne Zusage der mechanischen Eigenschaften angeboten – Garantiewerte bedürfen einer gesonderten Vereinbarung.

Abmessungsbeispiele

Maximale Breite je Dicke; weitere Abmessungen und Mindestbestellmengen auf Anfrage

<table>
<thead>
<tr>
<th>Stahlsorte</th>
<th>2,00</th>
<th>2,50</th>
<th>3,00</th>
<th>3,50</th>
<th>4,00</th>
<th>6,00</th>
<th>8,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10E</td>
<td>1370</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>C15E</td>
<td>1370</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>16MnCr5</td>
<td>1240</td>
<td>1410</td>
<td>1590</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>C20E</td>
<td>1240</td>
<td>1410</td>
<td>1590</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>C25E</td>
<td>1240</td>
<td>1390</td>
<td>1540</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>C30E</td>
<td>1200</td>
<td>1350</td>
<td>1500</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>C35E / C55S</td>
<td>1200</td>
<td>1350</td>
<td>1500</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>C360 / C400S</td>
<td>1110</td>
<td>1260</td>
<td>1410</td>
<td>1560</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>C37S</td>
<td>1110</td>
<td>1260</td>
<td>1410</td>
<td>1560</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>C38S</td>
<td>1090</td>
<td>1220</td>
<td>1350</td>
<td>1485</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>25CrMo4</td>
<td>1110</td>
<td>1260</td>
<td>1410</td>
<td>1560</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>34CrMo4</td>
<td>1110</td>
<td>1260</td>
<td>1410</td>
<td>1560</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>42CrMo4</td>
<td>1090</td>
<td>1220</td>
<td>1350</td>
<td>1485</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>51CrV4</td>
<td>1090</td>
<td>1220</td>
<td>1350</td>
<td>1485</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>20MnB5</td>
<td>1110</td>
<td>1260</td>
<td>1410</td>
<td>1560</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>27MnCrB5-2</td>
<td>1110</td>
<td>1260</td>
<td>1410</td>
<td>1560</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>58CrV4</td>
<td>1090</td>
<td>1220</td>
<td>1350</td>
<td>1485</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>63NiNB4</td>
<td>1090</td>
<td>1220</td>
<td>1350</td>
<td>1485</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>68NiCMo3</td>
<td>1090</td>
<td>1220</td>
<td>1350</td>
<td>1485</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>72NiCoMo4-2</td>
<td>1090</td>
<td>1220</td>
<td>1350</td>
<td>1485</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>75CrNiMo</td>
<td>1090</td>
<td>1220</td>
<td>1350</td>
<td>1485</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>75Cr1</td>
<td>1090</td>
<td>1220</td>
<td>1350</td>
<td>1485</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>75Ni8</td>
<td>1090</td>
<td>1220</td>
<td>1350</td>
<td>1485</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>80CrV2</td>
<td>-</td>
<td>1025</td>
<td>(1150)</td>
<td>(1270)</td>
<td>(1400)</td>
<td>(1620)</td>
<td>(1620)</td>
</tr>
<tr>
<td>C100S</td>
<td>-</td>
<td>1220</td>
<td>1350</td>
<td>1485</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
<tr>
<td>D6A</td>
<td>-</td>
<td>1100</td>
<td>1260</td>
<td>1430</td>
<td>1620</td>
<td>1620</td>
<td>1620</td>
</tr>
</tbody>
</table>

Je nach Dimension und Festigkeit bieten wir auch an: gebeizt / geölt / besäumt

Abmessungstoleranzen:

Abmessungstoleranzen des Warmbandes entsprechen der EN 10051.
Für die Dicke gilt 50% der Normtoleranz als Standard, gemessen ab 25 mm von der geschnittenen Kante. Engere Dickentoleranzen sind auf Anfrage möglich.
Je nach Weiterverarbeitung (z. B. Kaltwalzen) ist ein sehr flaches Bandprofil entscheidend.
Die Anforderungen sind je Abmessung und Werkstoff zu vereinbaren.

Technische Änderungen sowie Satz- und Druckfehler vorbehalten. Nachdruck, wenn auch nur auszugsweise, nur mit ausdrücklicher Genehmigung der voestalpine Stahl GmbH.
Allgemeine Informationen zu den Werkstoffeigenschaften

Chemische Zusammensetzung

Mechanische Eigenschaften
C-Stähle werden grundsätzlich nach Analysenvorschrift ohne Gewährleistung der mechanischen Eigenschaften im Lieferzustand gefertigt. Die Eigenschaften des Warmbandes werden dabei auch wesentlich von der angewandten Kühlstrategie bestimmt. Im Besonderen gilt dies auch für die Ausbildung des Perlits.

Lieferzustand
Abgestimmt auf die Kundenanforderung bzw. die Weiterverarbeitung können nachstehende Lieferzustände (abhängig von der Stahlsorte) angeboten werden:
- Walzzustand mit großteils feinlamellarem Perlit: z. B. für eine optimale Gefügeeiformung beim Weichglühen
- Walzzustand mit großteils globularem Perlit: z. B. für niedrigere Festigkeit im Lieferzustand
- Weichgeglüht: Haubenglühung ohne Einformgarantie
- GKZ-Geglüht: Haubenglühung mit Einformgrad je nach Güte auf Anfrage

Bei einer Lieferung im geglihten Zustand ist eine vorhergehende Entzunderung an der Bandbeize zu empfehlen.

Reinheitsgrad
Mit Bedacht auf den mikroskopischen Reinheitsgrad und die Seigerungsausbildung werden die C-Stähle bei voestalpine Stahl mit abgesenkten Schwefel- und Phosphorgehalten hergestellt (Edelstähle gemäß EN 10020). Konkrete Vereinbarungen für den Reinheitsgrad können im Zuge einer Anfrage gemäß EN 10247 (früher DIN 50602), ASTM E 45, ISO 4967 getroffen werden.

Weichfleckigkeit
Um analytisch bedingte Weichfleckigkeit möglichst zu vermeiden werden maximale Aluminiumgehalte vorgegeben oder Aluminium und Chrom im Verhältnis 1/10 abgestimmt (unlegierte Einsatzstähle).

Graphitisierung
Bei C-Gehalten über 0,50 % kann es bei entsprechender Analysenlage, in Kombination mit hohen Kaltwalzgraden und langen Glühzyklen – zu unerwünschten Graphitausscheidungen kommen. Um die Graphitisierungsneigung zu hemmen wird analytisch entsprechend gegengesteuert und gegebenenfalls mit dem Kunden eine Absenkung des Al-Gehaltes, das Zulegieren von Cr, Mn, etc. vereinbart.

Weitere Informationen und Downloads finden Sie im Internet unter www.voestalpine.com/stahl