

alform®

Thermomechanisch gewalzte Feinkornstähle

Die Stahlsorten der alform®-Reihe sind thermomechanisch gewalzte, schweiß- und kantbare Feinkornbaustähle. Sie verbinden die guten Zähigkeitseigenschaften der thermomechanisch gewalzten Feinkornbaustähle nach EN 10025-4 mit der hervorragenden Kantbarkeit der Kaltumformstähle nach EN 10149-2.

Das Legierungskonzept zeichnet sich durch sehr niedrige Kohlenstoffgehalte und niedrige Kohlenstoffäquivalente aus. Dies ergibt eine sehr gute Schweißeignung. Besonders die Stahlsorten in den hohen Festigkeitslagen (alform plate 500 M, alform plate 550 M) bringen Vorteile in Anwendungsgebieten, in denen der Gewichtseinsparung große Bedeutung zukommt. Die Stahlsorten der alform®-Reihe finden vielfältige Anwendung im Stahlbau, Brückenbau, Druckrohrleitungsbau, Fahrzeug- und Kranbau. Die Stähle der alform®-Reihe werden nach dem LD-Verfahren erschmolzen und sind vollkommen beruhigt.

Überzeugende Vorteile:

- » Sehr gute Schweißbarkeit
- » Ausgezeichnete Kaltumformbarkeit
- » Ausgezeichnete Zähigkeit
- » Beste Oberfläche

Premiumqualität mit reduziertem CO₂-Fußabdruck

Chemische Zusammensetzung:

Schmelzenanalyse in Masse-%

	С	Si	Mn	P 1)	S 1)	Nb 2)	V 2)	Ti 2)	Cr	Ni	Cu	Мо
alform®	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.
plate 355 M	0,10	0,40	1,60	0,012	0,003	0,05	0,08	0,02	0,30	0,30	0,30	0,10
plate 420 M	0,10	0,40	1,70	0,012	0,003	0,05	0,10	0,02	0,30	0,30	0,30	0,20
plate 460 M	0,10	0,40	1,70	0,012	0,003	0,05	0,10	0,02	0,30	0,70	0,30	0,20
plate 500 M	0,10	0,40	2,00	0,012	0,003	0,06	0,12	0,02	0,30	0,80	0,30	0,50
plate 550 M	0,10	0,40	2,00	0,012	0,003	0,09	0,12	0,02	0,30	0,80	0,30	0,50

 $^{^{\}mbox{\tiny 1)}}$ Die EN 10025-4 lässt deutlich höhere Werte zu: P max. 0,025; S max. 0,020

Kohlenstoffäquivalente:

Richtwerte für Kohlenstoffgehalt und -äquivalente

alform®	Blechdicke [mm]	C [%]	CEV ³⁾ [%]	CET ⁴⁾ [%]	PCM ⁵⁾ [%]
plate 355 M	20	0,04	0,33	0,20	0,13
plate 420 M	20	0,04	0,33	0,20	0,13
plate 460 M	20	0,04	0,37	0,22	0,15
plate 500 M	20	0,05	0,43	0,26	0,17
plate 550 M	20	0,05	0,45	0,29	0,20

 $^{^{3)}}$ CEV = C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15, nach IIW

Mechanische Eigenschaften: Zugversuch

alform®	Blechdicke 6) [mm]	Streckgrenze R _{eH} ⁷⁾ [MPa] min.	Zugfestigkeit R _m ⁷⁾ [MPa]	Bruchdehnung $A_5^{7)}$ [%] min.
	8 ≤ 16	355	470 - 630	22
	> 16 ≤ 40	345	470 - 630	22
plate 355 M	> 40 ≤ 63	335	450 - 610	22
	> 63 ≤ 80	325	440 - 600	22
	> 80 ≤ 100	325	440 - 600	22
plate 420 M	8 ≤ 16	420	520 - 680	19
	> 16 ≤ 40	400	520 - 680	19
	> 40 ≤ 63	390	500 - 660	19
	> 63 ≤ 80	380	480 - 650	19
	> 80 ≤ 100	380	470 - 630	19
plate 460 M	8 ≤ 16	460	540 - 720	17
	> 16 ≤ 40	440	540 - 720	17
	> 40 ≤ 63	430	530 - 710	17
	> 63 ≤ 80	410	510 - 690	17
	> 80 ≤ 100	410	500 - 680	17
plate 500 M	8 ≤ 16	500	580 - 760	16
	> 16 ≤ 40	480	580 - 760	16
	> 40 ≤ 63	460	580 - 760	16
	> 63 ≤ 80	450	580 - 760	16
plate 550 M	8 ≤ 50	550	600 - 760	16

 $^{^{\}rm 2)}$ Die Summe von Nb, V und Ti darf 0,22 % nicht überschreiten.

Andere Legierungselemente werden nicht zulegiert.

 $^{^{4)}}$ CET = C + (Mn + Mo)/10 + (Cr + Cu)/20 + Ni/40, nach SEW 088

 $^{^{5)}}$ PCM = C + Si/30 + (Mn + Cu + Cr)/20 + Ni/60 + Mo/15 + V/10 + 5*B, nach API 5L

⁶⁾ größere Dicken auf Anfrage
⁷⁾ Der Zugversuch wird gemäß EN ISO 6892-1 an Querproben durchgeführt.

Mechanische Eigenschaften: Kerbschlagarbeit/Kantradien

		Kerbschlagarbeit ⁸⁾ Av [Joule] min. Prüfrichtung Prüfrichtung längs quer		Kantradien Ri min. bei 90° Kantung (s = Blechdicke) Lage der Biegekante	
alform®	Blechdicke [mm]	Prüftemperatur -50°C	Prüftemperatur -50°C	zur Walz längs	richtung quer
					·
plate 355 M	8 ≤ 100	27	16	1,5 s	1,0 s
plate 420 M	8 ≤ 100	27	16	2,0 s	1,5 s
plate 460 M	8 ≤ 100	27	16	2,0 s	1,5 s
plate 500 M	8 ≤ 80	27	16	3,0 s	2,0 s
plate 550 M	8 ≤ 50	27	16	3,0 s	2,0 s

 $^{^{8)}}$ Kerbschlagbiegeversuch gemäß EN ISO 148-1 an Charpy-V-Längsproben bei -50 °C. $Der \,Mittelwert \,aus \,den \,drei \,Prüfergebnissen \,muss \,den \,festgelegten \,Anforderungen \,entsprechen. \,Es \,darf kein \,Einzelwert \,unter \,70 \,\%$ $\ \, \text{des Mindest-Mittelwertes liegen. Bei Dicken} < 12 \, \text{mm werden Untermaß-Proben mit den Abmessungen} \ 10 \times 7.5 \, \text{mm gepr\"{u}ft.}$ $Der \, Gew\"{a}hr leistungswert \, vermindert \, sich \, proportional \, zum \, Probenquerschnitt.$

Lieferbare Abmessungen:

Maximale Breite je Dicke; Mindestbreite 1.500 mm

alform [®]	Blechdicke ⁹⁾ [mm]	Max. Breite [mm]	Max. Länge [mm]	Lieferzustand 10)
plate 355 M	8 ≤ 100	3.800	18.700	TM + ACC
plate 420 M	8 ≤ 100	3.800	18.700	TM + ACC
plate 460 M	8 ≤ 100	3.800	18.700	TM + ACC
plate 500 M	8 ≤ 80	3.800	18.700	TM + ACC
plate 550 M	8 ≤ 50	3.800	18.700	TM + ACC

 $^{^{9)}~}$ Für Dicken 8 < 9 mm und Breiten \geq 3.450 - 3.800 mm beträgt die max. Länge 17.000 mm. Für Dicken 9 < 10 mm und Breiten > 3.650 - 3.800 mm beträgt die max. Länge 17.000 mm. $^{\rm 10)}$ TM ... thermomechanisch gewalzt; ACC ... schnellgekühlt (accelerated cooled)

Weitere Abmessungen auf Anfrage.

UNSER WEG IN EINE GRÜNERE ZUKUNFT

Premiumprodukte in der greentec steel Edition

Mit greentec steel verfolgt die voestalpine einen ambitionierten Stufenplan zur langfristigen Dekarbonisierung der Stahlerzeugung. Das erklärte Ziel ist es bis 2050 CO₂-neutral zu produzieren und die ersten Schritte in diese Richtung sind getan. Durch eine prozessoptimierte Fahrweise können bereits jetzt bis zu 10 % der direkten CO₂-Emissionen am Standort Linz vermieden werden. Die Werkstoff- und Verarbeitungseigenschaften des Stahls werden durch diese Fahrweise jedoch nicht beeinflusst. Alle voestalpine Grobblechprodukte mit dem gewohnt einzigartigen Nutzenprofil sind daher in Premiumqualität auch mit reduziertem CO₂-Fußabdruck als greentec steel Edition erhältlich.

Premiumqualität mit reduziertem CO₂-Fußabdruck

Grobblech (exkl. Böden und plattierte Bleche) – greentec steel Edition

Max. CO₂-Fußabdruck 2,21 kg CO₂e/kg Stahl ¹⁾

1) nach EN 15804+A2 (Methodik EPD) "Cradle-to-Gate"

Die in dieser Druckschrift enthaltenen Informationen und Produktmerkmale dienen lediglich als unverbindliche, technische Orientierungshilfe und ersetzen keinesfalls eine individuelle Beratung durch unser Verkaufs- und Kundenserviceteam. Die hierin enthaltenen Informationen und Produktmerkmale gelten darüber hinaus nur dann als zugesicherte Eigenschaften, sofern sie individuell vertraglich vereinbarte werden. Sofern nicht anderslautend vereinbart, übernimmt voestalpine daher keine Gewährleistung und sonstige Hoftung für andere als die ausdrücklich vereinbarten Eigenschaften/Spezifikationen. Dies gilt ebenso für die Eignung/Verwendbarkeit der Produkte für bestimmte Einsatzzwecke und die Weiterverarbeitung zu einem bestimmten Endprodukt (Verwendungs- und Eignungsrisiken liegen daher grundsätzlich beim Kunden). Im Übrigen gelten für sämtliche Lieferungen die "Allgemeinen Verkaufsbedingungen für Lieferungen und Leistungen der voestalpine Steel Division", welche unter dem nachfolgenden Link abrufbar sindt: www.voestalpine.com/stahl/Die-Steel-Division/Allgemeiner-Verkaufsbedingungen

Technische Änderungen sowie Satz- und Druckfehler vorbehalten. Nachdruck, wenn auch nur auszugsweise, nur mit ausdrücklicher Genehmigung der voestalpine Stahl GmbH.

Weitere Informationen und Downloads finden Sie im Internet unter www.voestalpine.com/alform

